L’offre recherchée a été supprimée ou est expirée.
Voici des offres qui pourraient correspondre.
Trouvez votre prochaine mission ou futur job IT.
Votre recherche renvoie 7 résultats.
Offre d'emploi
Ingénieur DEVOPS / AIOPS Cloud – Projet Data & Machine Learnin
Publiée le
CI/CD
Large Language Model (LLM)
Terraform
3 ans
Île-de-France, France
Télétravail partiel
Contexte : Dans le cadre du développement de ses activités Cloud et Data, notre client — grand groupe international du secteur Assurance — recherche un Ingénieur DEVOPS / AIOPS afin de renforcer un équipage Agile en charge du RUN et de la mise en production de plateformes de Machine Learning (MLOps). Vous interviendrez dans un contexte Cloud hybride (on-premise / Kubernetes / OpenShift) et collaborerez étroitement avec les équipes Data Scientists, Machine Learning Engineers et Production IT . Vos missions : Intégré(e) au sein d’un équipage applicatif, vous aurez pour principales responsabilités : Participer au MCO des plateformes de Machine Learning (supervision, disponibilité, performances). Accompagner les Data Scientists et ML Engineers dans la mise en production des modèles et la gestion des environnements. Assurer le support N3 , l’analyse et la résolution d’incidents complexes. Contribuer à la mise en place et à l’évolution des chaînes CI/CD (Jenkins, GitLab). Automatiser les processus via Ansible, Terraform, scripts Shell/Python . Garantir l’ exploitabilité et la conformité des solutions (sauvegardes, monitoring, sécurité, documentation). Participer aux revues d’architecture et formuler des avis de production . Être force de proposition dans l’amélioration continue (AIOps, observabilité, automatisation). Prendre part aux cérémonies Agile/Kanban et aux opérations planifiées (HNO, astreintes).
Mission freelance
Lead Machine leaning engineering
Publiée le
FastAPI
Flask
Gitlab
12 mois
470-510 €
Île-de-France, France
Télétravail partiel
Je recherche un(e) Lead Machine Learning Engineer pour accompagner la Direction Data d’un grand média français dans la mise en place d’une équipe dédiée aux sujets de recommandation et de personnalisation. 👤 Mission Vous interviendrez au cœur d’une équipe Data (PO, Data Scientist, Lead ML, ML Engineer) pour concevoir, déployer et industrialiser des modèles de machine learning en production, dans un environnement full Google Cloud. 💼 Compétences requises : • 5+ années d’expérience en environnement Data / Machine Learning • Déploiement en production de modèles ML (scalabilité, haute perf) • Maîtrise de Google Cloud (Vertex AI, BigQuery, Cloud Run, Composer, CloudSQL, IAM) • Très bonnes compétences en Python et SQL • Connaissances de Flask, FastAPI, SQLAlchemy, Pgvector, Pandas, Hugging Face • Expérience en Terraform / Terragrunt • Très bonnes connaissances en ML, Deep Learning, systèmes de recommandation • Maîtrise de GitLab & GitLab CI/CD • Capacité à vulgariser, communiquer et accompagner une équipe • Expérience des méthodes Agile (Scrum / Kanban) 📍 Modalités : • Présence sur site requise (~50% du temps) • Expérience attendue : Sénior • Environnement : Paris • Matériel sécurisé requis (chiffrement, antivirus, etc.)
Mission freelance
Machine Learning Ops
Publiée le
MLOps
RAG
1 an
400-650 €
Paris, France
Télétravail partiel
Je suis à la recherche pour un de nos clients d'un Machine Learning Ops. Le rôle consiste à garantir l'industrialisation, la fiabilisation, et la mise en production robuste et sécurisée de l'ensemble de nos modèles d'Intelligence Artificielle. Vous serez un pilier dans l'établissement des bonnes pratiques MLOps (Monitoring, Sécurité, Reproductibilité) et collaborerez en étroite collaboration avec les Data Scientists, Ingénieurs ML, le Product Owner, et l'équipe DevOps. Cette prestation est essentielle pour transformer la recherche en solutions opérationnelles à forte valeur ajoutée. Expertises requises dans le cadre de la réalisation de la prestation - 3 ans minimum d'expérience prouvée en développement/industrialisation IA/ML/DL ciblant des environnements de production. - Maitrise Avancée de Python et des librairies clés de Data Science/ML (e.g., NumPy, Pandas, Scikit-learn, PyTorch/TensorFlow). - Maîtrise de SQL pour l'accès et la manipulation des sources de données. - Pipeline MLOps et Outils : - Conception et Implémentation de Pipelines CI/CD dédiés aux modèles ML (GitLab CI ou équivalent), incluant le versioning des modèles et des datasets. - Conteneurisation Maîtrisée : Capacité à packager, déployer et maintenir des services IA via Docker. - Tracking et Registre de Modèles : Expérience obligatoire avec des outils de gestion du cycle de vie des modèles comme MLflow ou équivalent (p. ex. Comet ML). - Expertise Modèles de Langage (LLM/NLP) - Maîtrise de l'architecture RAG (Retrieval-Augmented Generation) et de son industrialisation. - Mise en place et intégration d'outils d'orchestration de LLM (e.g., LangChain/LangSmith, Semantic Kernel, ou équivalent) dans un contexte de production. - Cloud et Déploiement : Maîtrise avérée d'un Cloud Provider avec une expérience significative en déploiement de services serverless ou conteneurisés - Optimisation et Feedback : capacité à intégrer des boucles de feedback continu pour l'amélioration des modèles (Monitoring de la dérive, Retraining automatique, concepts de Human-in-the-Loop). C ompétences souhaitées : - Orchestration et Scalabilité : expérience pratique du déploiement de charges d’activité IA sur Kubernetes (K8s) et des concepts d'opérateurs MLOps (KubeFlow, Argo). - Expérience dans la mise en place de tests de performance et de montée en charge spécifiques aux services d'inférence ML/LLM (benchmarking, stress testing, choix du hardware). - Techniques de Modélisation Avancées : - Connaissance des techniques d'optimisation de modèles pour la production (Quantization, Distillation, Pruning) ou de Fine-Tuning/PEFT (LoRA). - Expérience en Computer Vision (déploiement de modèles de détection/classification) ou en SLM (Small Language Models). - Qualité et Assurance IA : - Mise en œuvre de métriques d'évaluation non-traditionnelles pour les LLM (e.g., AI as a Judge, évaluation du Hallucination Rate, Grounding Score).
Offre d'emploi
Machine Learning Engineering
Publiée le
Agile Scrum
Big Data
CI/CD
12 mois
40k-48k €
500-570 €
Paris, France
Télétravail partiel
Afin d’améliorer la personnalisation de l’expérience utilisateurs, nous souhaitons créer une équipe dédiée, travaillant sur des sujets de recommandation et de machine learning en production. Cette équipe est composée d’un Product Owner, un Data Scientist, un lead ML ingénieur et un ML ingénieur. Notre stack technique est basé sur Google Cloud et constituée, entre autres, de Python, Vertex AI, BigQuery, Cloud Run et Airflow pour l’orchestration des traitements. La stack inclut aussi d’autres services de la Google Cloud Platform. La prestation de l'équipe : Créer les premiers cas d’usage en lien avec la personnalisation de l’expérience utilisateur basés sur de la recommandation utilisateur Déployer ce projet et AB tester en production Mettre en place un monitoring et un contrôle des performances Prestations attendues : En interaction avec les membres de l’équipe, la prestation consistera à : Concevoir, construire et maintenir des pipelines ML robustes et scalables de la collecte des données à l’exposition des modèles via des API Rest Organiser et structurer le stockage des données Assurer l’évolutivité, la sécurité, la stabilité des environnements Mettre en place et maintenir les infrastructures scalables capable de répondre aux besoins et au volume de données Industrialiser les modèles IA en lien avec les data scientists Construire et maintenir les workflows de la CI/CD Collaborer avec les data ingénieurs et les autres équipes techniques pour appliquer les bonnes pratiques en vigueur Contribuer et veiller à la mise à jour de la documentation Faire de la veille technologique active dans le domaine Participer activement aux différentes phases de cadrage, de planification et de réalisation des tâches avec l’équipe
Offre d'emploi
INGENIEUR MACHINE Learning Engineering
Publiée le
MySQL
Python
18 mois
40k-45k €
100-550 €
Paris, France
Télétravail partiel
CONTEXTE Afin d’améliorer la personnalisation de l’expérience utilisateurs, nous souhaitons créer une équipe dédiée, travaillant sur des sujets de recommandation et de machine learning en production. Cette équipe est composée d’un Product Owner, un Data Scientist, un lead ML ingénieur et un ML ingénieur. Notre stack technique est basé sur Google Cloud et constituée, entre autres, de Python, Vertex AI, BigQuery, Cloud Run et Airflow pour l’orchestration des traitements. La stack inclut aussi d’autres services de la Google Cloud Platform. MISSIONS : 1. Créer les premiers cas d’usage en lien avec la personnalisation de l’expérience utilisateur basés sur de la recommandation utilisateur 2. Déployer ce projet et AB tester en production 3. Mettre en place un monitoring et un contrôle des performances En interaction avec les membres de l’équipe, la prestation consistera à : • Concevoir, construire et maintenir des pipelines ML robustes et scalables de la collecte des données à l’exposition des modèles via des API Rest • Organiser et structurer le stockage des données • Assurer l’évolutivité, la sécurité, la stabilité des environnements • Mettre en place et maintenir les infrastructures scalables capable de répondre aux besoins et au volume de données • Industrialiser les modèles IA en lien avec les data scientists • Construire et maintenir les workflows de la CI/CD • Collaborer avec les data ingénieurs et les autres équipes techniques pour appliquer les bonnes pratiques en vigueur • Contribuer et veiller à la mise à jour de la documentation • Faire de la veille technologique active dans le domaine • Participer activement aux différentes phases de cadrage, de planification et de réalisation des tâches avec l’équipe
Offre d'emploi
ML Ingénieur (23)
Publiée le
Machine Learning
Python
1 an
40k-45k €
400-620 €
Île-de-France, France
Télétravail partiel
À propos de l'entreprise La Direction Technique du Numérique d'une grande entreprise de médias mène des projets transverses en étroite collaboration avec les autres directions, notamment la direction Data. La Direction Data, au sein de la Direction du Numérique, a été créée avec la volonté de faire de la Data un levier de croissance des offres numériques. Elle a 3 grandes missions : maximiser la collecte de données tout en respectant les réglementations en vigueur, développer la connaissance et l'expérience utilisateur, mettre à disposition auprès des équipes internes des outils de pilotage et d'aide à la décision. Descriptif du poste Afin d'améliorer la personnalisation de l'expérience utilisateurs, nous souhaitons créer une équipe dédiée, travaillant sur des sujets de recommandation et de machine learning en production. Cette équipe est composée d'un Product Owner, un Data Scientist, un lead ML ingénieur et un ML ingénieur. Notre stack technique est basé sur une plateforme cloud majeure et constituée, entre autres, de Python, Vertex AI, BigQuery, Cloud Run et Airflow pour l'orchestration des traitements. La stack inclut aussi d'autres services de cette plateforme cloud. Missions de l'équipe : Créer les premiers cas d'usage en lien avec la personnalisation de l'expérience utilisateur basés sur de la recommandation utilisateur Déployer ce projet et AB tester en production Mettre en place un monitoring et un contrôle des performances Prestations attendues En interaction avec les membres de l'équipe, la prestation consistera à : Concevoir, construire et maintenir des pipelines ML robustes et scalables de la collecte des données à l'exposition des modèles via des API Rest Organiser et structurer le stockage des données Assurer l'évolutivité, la sécurité, la stabilité des environnements Mettre en place et maintenir les infrastructures scalables capable de répondre aux besoins et au volume de données Industrialiser les modèles IA en lien avec les data scientists Construire et maintenir les workflows de la CI/CD Collaborer avec les data ingénieurs et les autres équipes techniques pour appliquer les bonnes pratiques en vigueur Contribuer et veiller à la mise à jour de la documentation Faire de la veille technologique active dans le domaine Participer activement aux différentes phases de cadrage, de planification et de réalisation des tâches avec l'équipe
Offre d'emploi
Data Scientist
Publiée le
Google Cloud Platform (GCP)
Machine Learning
1 an
40k-45k €
400-620 €
Île-de-France, France
Télétravail partiel
Contexte La Direction Technique du Numérique d'une grande entreprise de médias mène des projets transverses en étroite collaboration avec les autres directions, notamment la direction Data. La Direction Data, au sein de la Direction du Numérique, a été créée avec la volonté de faire de la Data un levier de croissance des offres numériques. Elle a 3 grandes missions : maximiser la collecte de données tout en respectant les réglementations en vigueur, développer la connaissance et l'expérience utilisateur, mettre à disposition auprès des équipes internes des outils de pilotage et d'aide à la décision. Afin d'améliorer la personnalisation de l'expérience utilisateurs, nous souhaitons créer une équipe dédiée, travaillant sur des sujets de recommandation et de machine learning en production. Cette équipe est composée d'un Product Owner, un Data Scientist, un lead ML ingénieur et un ML ingénieur. Notre stack technique est basé sur une plateforme cloud majeure et constituée, entre autres, de Python, Vertex AI, BigQuery, Cloud Run et Airflow pour l'orchestration des traitements. La stack inclut aussi d'autres services de la plateforme cloud. Missions de l'équipe Créer les premiers cas d'usage en lien avec la personnalisation de l'expérience utilisateur basés sur de la recommandation utilisateur Déployer ce projet et AB tester en production Mettre en place un monitoring et un contrôle des performances Prestations attendues En interaction avec les membres de l'équipe, la prestation consistera à : Concevoir, construire et maintenir des pipelines ML robustes et scalables de la collecte des données à l'exposition des modèles via des API Rest Organiser et structurer le stockage des données Assurer l'évolutivité, la sécurité, la stabilité des environnements Mettre en place et maintenir les infrastructures scalables capable de répondre aux besoins et au volume de données Industrialiser les modèles IA en lien avec les data scientists Construire et maintenir les workflows de la CI/CD Collaborer avec les data ingénieurs et les autres équipes techniques pour appliquer les bonnes pratiques en vigueur Contribuer et veiller à la mise à jour de la documentation Faire de la veille technologique active dans le domaine Participer activement aux différentes phases de cadrage, de planification et de réalisation des tâches avec l'équipe
Déposez votre CV
-
Fixez vos conditions
Rémunération, télétravail... Définissez tous les critères importants pour vous.
-
Faites-vous chasser
Les recruteurs viennent directement chercher leurs futurs talents dans notre CVthèque.
-
100% gratuit
Aucune commission prélevée sur votre mission freelance.
Derniers posts sur le forum
7 résultats
Contrats
Lieu
Télétravail
Taux Journalier Moyen min.
150 €
1300 € et +
Salaire brut annuel min.
20k €
250k €
Durée
0
mois
48
mois